Polyplexes assembled with internally quaternized PAMAM-OH dendrimer and plasmid DNA have a neutral surface and gene delivery potency.
نویسندگان
چکیده
Interior tertiary amine groups of PAMAM-OH dendrimers (hydroxyl-terminated polyamidoamine, PAMAM) were modified by methylation to make these polymers have a more cationic character, which enabled electrostatic interaction between PAMAM-OH and plasmid DNA. A methylation reaction was dose-dependent, producing internally quaternized PAMAM-OH (QPAMAM-OH), thereby making tertiary amine/quaternary amine ratio adjustment possible. More highly condensed particles of plasmid DNA were formed as the degree of quaternization increased, whereas unmodified polymer (PAMAM-OH) could not. The location of positive charges in the internal position of QPAMAM-OH resulted in the formation of neutral polyplexes in which zeta potential leveled off near the zero value even at high charge ratios (+/-) of 10. A light scattering experiment showed that the polyplex formed by QPAMAM-OH was very small with the size of 53.3 nm at the optimum condition. QPAMAM-OH/DNA polyplexes were round-shaped with the more compact and small particles formed as the charge ratio increased. QPAMAM-OH showed much reduced cytotoxicity compared with starburst PAMAM and branched polyethyleneimine (PEI) in which shielding of interior positive charges by surface hydroxyls might be the reason for this favorable result. These results suggest that QPAMAM-OH could be a promising tool as a nonviral vector both by itself and in conjugated form with targeting ligands.
منابع مشابه
Ternary complex of plasmid DNA electrostatically assembled with polyamidoamine dendrimer and chondroitin sulfate for effective and secure gene delivery.
The purpose of this study was to develop a ternary complex of plasmid DNA (pDNA) electrostatically assembled with polyamidoamine (PAMAM) dendrimer and chondroitin sulfate (CS) for effective and secure gene delivery. PAMAM dendrimers are new cationic polymers that are expected to be used as gene delivery vectors. However, cationic non-viral gene vectors showed cytotoxicity by binding to negative...
متن کاملSRL-coated PAMAM dendrimer nano-carrier for targeted gene delivery to the glioma cells and competitive inhibition by lactoferrin
Glioma, as a primary tumor of central nervous system, is the main cause of death in patients with brain cancer. Therefore, development of an efficient strategy for treatment of glioma is worthy. The aim of the current study was to develop a SRL peptide-coated dendrimer as a novel dual gene delivery system for targeting the LRP receptor, an up-regulated gene in both BBB and glioma cells. To perf...
متن کاملSRL-coated PAMAM dendrimer nano-carrier for targeted gene delivery to the glioma cells and competitive inhibition by lactoferrin
Glioma, as a primary tumor of central nervous system, is the main cause of death in patients with brain cancer. Therefore, development of an efficient strategy for treatment of glioma is worthy. The aim of the current study was to develop a SRL peptide-coated dendrimer as a novel dual gene delivery system for targeting the LRP receptor, an up-regulated gene in both BBB and glioma cells. To perf...
متن کاملCellular Delivery of Nanostructured Poly(amido amine) Dendrimers and Establishment of a Simple Methodology upon Ninhydrin Reaction
Dendrimer based nanostructures have been increasingly used for delivery of drugs/genes. These nanosystems, as non-viral gene delivery systems, were shown to have relatively high transfection efficiency despite exerting somewhat cytotoxicity. In this current investigation, poly(amido amine) (PAMAM) dendrimers, generation (G) zero to five, PEGylated PAMAM G3 and a new quaternized PAMAM G4 ...
متن کاملPEGylated quaternized copolymer/DNA complexes for gene delivery.
The aim of this study was to improve the colloidal stability, decrease unspecific interactions with cells and blood components of a novel gene delivery system composed of epsilon-caprolactone and quaternized epsilon-caprolactone. For this purpose, diblock 50/50 copolymer was used to generate complexes with DNA by either the solvent evaporation technique and by dialysis. The size, surface charge...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bioconjugate chemistry
دوره 14 6 شماره
صفحات -
تاریخ انتشار 2003